初中生
最后登录1970-1-1
在线时间 小时
注册时间2017-8-23
|
#include "pwm.h"
/**
******************************************************************************
* @file TIM/PWM_Output/main.c
* @author MCD Application Team
* @version V3.5.0
* @date 27-11-2017
* @brief Main program body
******************************************************************************
*/
void TimPwm_out_Init(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
uint16_t CCR1_Val = 666;
uint16_t CCR2_Val = 249;
uint16_t CCR3_Val = 166;
uint16_t CCR4_Val = 83;
uint16_t PrescalerValue = 0;
/* -----------------------------------------------------------------------
TIM3 Configuration: generate 4 PWM signals with 4 different duty cycles:
The TIM3CLK frequency is set to SystemCoreClock (Hz), to get TIM3 counter
clock at 24 MHz the Prescaler is computed as following:
- Prescaler = (TIM3CLK / TIM3 counter clock) - 1
SystemCoreClock is set to 72 MHz for Low-density, Medium-density, High-density
and Connectivity line devices and to 24 MHz for Low-Density Value line and
Medium-Density Value line devices
The TIM3 is running at 36 KHz: TIM3 Frequency = TIM3 counter clock/(ARR + 1)
= 24 MHz / 666 = 36 KHz
TIM3 Channel1 duty cycle = (TIM3_CCR1/ TIM3_ARR)* 100 = 50%
TIM3 Channel2 duty cycle = (TIM3_CCR2/ TIM3_ARR)* 100 = 37.5%
TIM3 Channel3 duty cycle = (TIM3_CCR3/ TIM3_ARR)* 100 = 25%
TIM3 Channel4 duty cycle = (TIM3_CCR4/ TIM3_ARR)* 100 = 12.5%
----------------------------------------------------------------------- */
/* Compute the prescaler value */
PrescalerValue = (uint16_t) (SystemCoreClock / 24000000) - 1;
/* Time base configuration */
TIM_TimeBaseStructure.TIM_Period =1331;
TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
/* PWM1 Mode configuration: Channel1 */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM3, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);
/* PWM1 Mode configuration: Channel2 */
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR2_Val;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
/* PWM1 Mode configuration: Channel3 */
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR3_Val;
TIM_OC3Init(TIM3, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Enable);
/* PWM1 Mode configuration: Channel4 */
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR4_Val;
TIM_OC4Init(TIM3, &TIM_OCInitStructure);
TIM_OC4PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM3, ENABLE);
/* TIM3 enable counter */
TIM_Cmd(TIM3, ENABLE);
}
void RCCTim3_Configuration(void)
{
/* TIM3 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
/* GPIOA and GPIOB clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |
RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE);
}
/**
* @brief Configure the TIM3 Ouput Channels.
* @param None
* @retval None
*/
void GPIOTim3_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
#ifdef STM32F10X_CL
/*GPIOB Configuration: TIM3 channel1, 2, 3 and 4 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);
#else
/* GPIOA Configuration:TIM3 Channel1, 2, 3 and 4 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_Init(GPIOB, &GPIO_InitStructure);
#endif
}
void Tim3_pwmout_config(void)
{
RCCTim3_Configuration();
GPIOTim3_Configuration();
TimPwm_out_Init();
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
while (1)
{}
}
#endif
上面是输出PWM
下面是输出阶梯波程序
#include "DmaDacTim6.h"
/**
* @brief Configures the different system clocks.
* @param None
* @retval None
*/
//extern const uint8_t Escalator8bit[6] ;
void RCC_Configuration( void)
{
/* Enable peripheral clocks ------------------------------------------------*/
#if !defined STM32F10X_LD_VL && !defined STM32F10X_MD_VL
/* DMA2 clock enable */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE);
#else
/* DMA1 clock enable */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
#endif
/* GPIOA Periph clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
/* DAC Periph clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);
/* TIM6 Periph clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
}
/**
* @brief Configures the different GPIO ports.
* @param None
* @retval None
*/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Once the DAC channel is enabled, the corresponding GPIO pin is automatically
connected to the DAC converter. In order to avoid parasitic consumption,
the GPIO pin should be configured in analog */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
/**
* @brief Inserts a delay time.
* @param nCount: specifies the delay time length.
* @retval None
*/
void Delay(__IO uint32_t nCount)
{
for(; nCount != 0; nCount--);
}
void DacDmaTim6(void)
{
const uint8_t Escalator8bit[6] = {0x0, 0x33, 0x66, 0x99, 0xCC, 0xFF};
DAC_InitTypeDef DAC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
/*!< At this stage the microcontroller clock setting is already configured,
this is done through SystemInit() function which is called from startup
file (startup_stm32f10x_xx.s) before to branch to application main.
To reconfigure the default setting of SystemInit() function, refer to
system_stm32f10x.c file
*/
/* System Clocks Configuration */
RCC_Configuration();
/* Once the DAC channel is enabled, the corresponding GPIO pin is automatically
connected to the DAC converter. In order to avoid parasitic consumption,
the GPIO pin should be configured in analog */
GPIO_Configuration();
/* TIM6 Configuration */
TIM_PrescalerConfig(TIM6, 0xF, TIM_PSCReloadMode_Update);
TIM_SetAutoreload(TIM6, 0xFF);
/* TIM6 TRGO selection */
TIM_SelectOutputTrigger(TIM6, TIM_TRGOSource_Update);
/* DAC channel1 Configuration */
DAC_InitStructure.DAC_Trigger = DAC_Trigger_T6_TRGO;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Disable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);
#if !defined STM32F10X_LD_VL && !defined STM32F10X_MD_VL
/* DMA2 channel3 configuration */
DMA_DeInit(DMA2_Channel3);
#else
/* DMA1 channel3 configuration */
DMA_DeInit(DMA1_Channel3);
#endif
DMA_InitStructure.DMA_PeripheralBaseAddr = DAC_DHR8R1_Address;
// DMA_InitStructure.DMA_PeripheralBaseAddr = DAC_DHR12R1 ;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&Escalator8bit;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_BufferSize = 6;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
#if !defined STM32F10X_LD_VL && !defined STM32F10X_MD_VL
DMA_Init(DMA2_Channel3, &DMA_InitStructure);
/* Enable DMA2 Channel3 */
DMA_Cmd(DMA2_Channel3, ENABLE);
#else
DMA_Init(DMA1_Channel3, &DMA_InitStructure);
/* Enable DMA1 Channel3 */
DMA_Cmd(DMA1_Channel3, ENABLE);
#endif
/* Enable DAC Channel1: Once the DAC channel1 is enabled, PA.04 is
automatically connected to the DAC converter. */
DAC_Cmd(DAC_Channel_1, ENABLE);
/* Enable DMA for DAC Channel1 */
DAC_DMACmd(DAC_Channel_1, ENABLE);
/* TIM6 enable counter */
TIM_Cmd(TIM6, ENABLE);
}
void DacDmaTim6_InitConfg( void)
{
RCC_Configuration();
GPIO_Configuration();
DacDmaTim6( );
}
|
|