本帖最后由 hezheng 于 2019-3-29 14:33 编辑
用STM32CUBEMX 生成 SDIO 4线模式。 在配置dma下图所示,STM32F103VETX 怎么只有配接收的,DMA,要么配置为发送,要么就配置为接收,我看STM32F4 系列的,就可以单独配置,SDIO_RX 和 TX,难道只能配要么读,或 写 单边DMA吗? 还有一个不解就是时钟分频到不刚高于25M就行,我的时钟分频没DMA情况下要20才行,速度才3M
2、通过MX生成的代码(设置为接收的),只能DMA接收, DMA发送,不行,但也不报错,就是不中断,和DMA中断。
看代码也没什么区别,内容一样,但是现在只能DMA读,不能DMA写就是里面DMA写的 /* Write Blocks in Polling mode */ 看里面备注了一个,写DMA怎么都不中断,也不DMA回调 , 接收有中断和回调。
后来改了,DMA读,常规模式写就可以 或者 配DMA写,常规模式读也是可以用,就是不能DMA发和收同时配 。
3、这软件不能直接像STM32F4 系列的 可以配置,读 和 写分开配吗?看手册只有一个通道4是SDIO的DMA.
STM32F103VETX 另外初始化,也是只能初始化单边的DMA 下面话的意思,只能单向的配置吗》
/*多个外围DMA句柄指针指向同一个DMA句柄。请注意,只有一个通道可以执行所有请求的DMAs。* / /*在调用HAL_SD_ReadBlocks_DMA或HAL_SD_WriteBlocks_DMA之前,请确保更改传输方向。* / __HAL_LINKDMA (hsd hdmarx hdma_sdio); __HAL_LINKDMA (hsd hdmatx hdma_sdio); /* Several peripheral DMA handle pointers point to the same DMA handle. Be aware that there is only one channel to perform all the requested DMAs. */ /* Be sure to change transfer direction before calling HAL_SD_ReadBlocks_DMA or HAL_SD_WriteBlocks_DMA. */
__HAL_LINKDMA(hsd,hdmarx,hdma_sdio);
__HAL_LINKDMA(hsd,hdmatx,hdma_sdio);
现在重新改了一下,写入数据前调用一下。void MX_SDIO_SD_Tx_Init(void) 变一下,方向,就可以中DMA写中断,写返回为0也是正确的,但奇怪是实际并没有写入进去,有知道什么原因的吗?
最后改了一下,写入读取都可以DMA了。
就是多加了停止之前的DMA 然后再变一下方向后,再读,或写即可
/* Stop any ongoing transfer and reset the state*/
HAL_DMA_Abort(&hdma_sdio);
/* Deinitialize the Channel for new transfer */
HAL_DMA_DeInit(&hdma_sdio);
HAL_StatusTypeDef SD_DMAConfigTx(SD_HandleTypeDef *hsd)
{
//static DMA_HandleTypeDef hdma_tx;
HAL_StatusTypeDef status;
/* Invalidate the dma tx handle*/
hsd->hdmatx = NULL;
hsd->hdmarx = NULL;
if(hsd->hdmatx == NULL)
{
/* Several peripheral DMA handle pointers point to the same DMA handle.
Be aware that there is only one channel to perform all the requested DMAs. */
/* Be sure to change transfer direction before calling
HAL_SD_ReadBlocks_DMA or HAL_SD_WriteBlocks_DMA. */
hdma_sdio.Instance = DMA2_Channel4;
hdma_sdio.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio.Init.Mode = DMA_NORMAL;
hdma_sdio.Init.Priority = DMA_PRIORITY_LOW;
/* Stop any ongoing transfer and reset the state*/
HAL_DMA_Abort(&hdma_sdio);
/* Deinitialize the Channel for new transfer */
HAL_DMA_DeInit(&hdma_sdio);
/* Configure the DMA Channel */
status = HAL_DMA_Init(&hdma_sdio);
//__HAL_LINKDMA(hsd, hdmatx, hdma_tx);
//__HAL_LINKDMA(hsd,hdmatx,hdma_sdio);
__HAL_LINKDMA(hsd,hdmarx,hdma_sdio);
__HAL_LINKDMA(hsd,hdmatx,hdma_sdio);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(DMA2_Channel4_5_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn);
}
else
{
status = HAL_OK;
}
return (status != HAL_OK? HAL_ERROR : HAL_OK);
}
HAL_StatusTypeDef SD_DMAConfigRx(SD_HandleTypeDef *hsd)
{
//static DMA_HandleTypeDef hdma_rx;
HAL_StatusTypeDef status = HAL_ERROR;
/* Invalidate the dma tx handle*/
hsd->hdmatx = NULL;
hsd->hdmarx = NULL;
if(hsd->hdmarx == NULL)
{
/* Configure DMA Rx parameters */
hdma_sdio.Instance = DMA2_Channel4;
hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio.Init.Mode = DMA_NORMAL;
hdma_sdio.Init.Priority = DMA_PRIORITY_LOW;
/* Stop any ongoing transfer and reset the state*/
HAL_DMA_Abort(&hdma_sdio);
/* Deinitialize the Channel for new transfer */
HAL_DMA_DeInit(&hdma_sdio);
/* Configure the DMA Channel */
status = HAL_DMA_Init(&hdma_sdio);
/* Associate the DMA handle */
//__HAL_LINKDMA(hsd,hdmarx,hdma_sdio);
__HAL_LINKDMA(hsd,hdmarx,hdma_sdio);
__HAL_LINKDMA(hsd,hdmatx,hdma_sdio);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(DMA2_Channel4_5_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn);
}
else
{
status = HAL_OK;
}
return (status != HAL_OK? HAL_ERROR : HAL_OK);
}
|